>
A
s ""l

BERKELEY LAB

FastCaloSim Status

Charles Leggett

HEP-CCE/PPS All Hands
November 5 2020




BERKELEY LAB

» ATLAS needs lots of simulation

« Simulation is paramount for SM and background modeling
In most analyses, as well as general detector and upgrade

studies

* A significant issue in Run-2 was the lack of MC-based
statistics, and will only worsen in Run-3 and beyond without

faster production

» A very large fraction of the simulation’s
computational budget is spent by the
LAr Calorimeter

- Parametrized simulation can speed things
up enormously: FastCaloSim

» FastCaloSim is small, self contained, few
dependencies, already had a CUDA port

Quick Motivation: Why FastCaloSim?

70
60

40

Annual CPU Consumption [MHS06-years]

80F

50F

3o§
20F
100

Tl -\-I 1 | 1 1 1 | 1 1 1 I 1 1 1 | 1 1 1 I 1 1 1 | 1 1 1 |\:
02020 2022 2024 2026 2028 2030 2032 2034

= 4 Conservative R&D
E v Aggressive R&D

[ — Sustained budget model
(+10% +20% capacity/year)

— 4 LHCC common scenario
- (Conservative R&D, u=200)

Run 3 (p=55) Run 5 ( 200)
L | T T T | T T T . | .\ T T I T T T ¥ | | i 1]
- ATLASPreliminary ,.'d’ ]
= 2020 Computing Model - CPU =
- o Baseline ¢ ]

Calorimeter-dominated

Wall clock consumption per workflow

@® MC simulation @ MC recons truction MC event generation
@ Analysis @ Group production @ Data processing
® Other

C. Leggett 2020-11-05



il CPU Code Profiling

BERKELEY LAB

» LAr Calorimeter has massive inherent parallelism — lots of independent cells and
associated tasks.

> Profiling studies identified
likely hotspots that are
paralellizable

> TFCSLateralShapeParametrizationHitChain::simulate() is the
most significant routine except

> CUDA kernels created o e ] [
to run these parts on the .
GPU

’ m‘?d'f'led daiaGStr“ Ct‘ires reSLateraishapeparamat zationit Timing for 1000 events
« reimplement Geometry e—

and parametrization 144 692 ... 127 326 ... 127 347 ...

tables for GPU — no I AT e el e

STL allowed ' C11613% [19.56 %
* 3 kernels: l 0

* reinit memory e TFCSLateralShaperorametrsstiomitaa..
| C15.82%

* main simulation P s
* reduction

C. Leggett

2020-11-05



)| GPU Validation

» CUDA has a very good random number generator (CURAND)
 FCS needs lots of random numbers

¢ 3 per hit X ~5k hits per event Energy: sample=2, electron, E=65536 MeV, 0.20<[n|<0.25, all pca Energy: sample=2, electron, E=65536 MeV, 0.20<[n|<0.25, all pca
. i " el o ol o =
much fa,ster th.an.generatlng on CPU " @Qﬂ*ﬂ% ] = ﬁ#ﬂjﬁ 1
 but can’t do bitwise comparisons N3 Y& i e ha
with CPU — only statistical ot i e | b s
150:— + 150?— +* 1
1001~ ﬁﬁj HﬁJr 100/~ 4 *#Jf ﬁﬁ;
- after looking at lots of histograms, o & **H% o o )
T . C #* E r H
results look statistically equivalent R T A S YR e " — .

» |f we sacrifice speed, we can generate random number on CPU, and transfer them to
GPU, using these for all calculations on GPU

« compared the results of 62 million hits in the Electron 64 GeV run

 found only 2 hits calculations that ended up in different calorimeter cell
» slightly different float rounding policies on CPU/GPU

* if we use double precision variables for certain calculations, difference vanishes

@ Confident that GPU code does the same thing as CPU




Sl CUDA Performance Studies

BERKELEY LAB

» |/O to read/unpack
parametrization files is
expensive: ~15s of 30s

» Execution only offloaded
if >500 hits, otherwise
CPU is faster

» GPU kernels very short
 launch latency limited

» Better performance if
group work between
multiple events to give
more work to GPU

Time /s

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

10000 Events

FastCaloSim Timing

W Total CPU

M Total GPU

B Total GPUg

B Event Loop CPU
8 Event Loop GPU
B Event Loop GPUg

C. Leggett 2020-11-05



Sl CUDA Performance Studies

BERKELEY LAB

» |/O to read/unpack
parametrization files is
expensive: ~15s of 30s

» Execution only offloaded
if >500 hits, otherwise
CPU is faster

» GPU kernels very short
 launch latency limited

» Better performance if
group work between
multiple events to give
more work to GPU

Speedup over CPU event loop time

FastCaloSim Speedup Over CPU (Event Loop)

25.00

10000 Events
20.00
15.00

10.00

5.00

B Event Loop GPU
B Event Loop GPUg

C. Leggett 2020-11-05



>~
rrrrrrr

Sl

BERKELEY LAB

>

Grouped work

not as effective

since regular GPU

IS already performant

* need to send
extra information
to GPU when work
IS grouped
between events

CUDA Performance Studies

» GPU performs better for higher energy particles (more hits/work)

Speedup over CPU

70

60

50

40

30

20

10

FastCaloSim Speedup for Higher Particle Energies

# GPU Event Loop
# GPUg Event Loop

C. Leggett

2020-11-05



ol GPU Usage With CUDA

> |n general, GPU resources are not well used
» kernels are very short, dominated by launch latency overheads
« work size is small, under-utilizing available GPU cores

FastCaloSim Scaling With Multiple Concurrent Processes
4

=il CpU total
=g CpU event loop
2 gpu total

g 2 gpU event loop
=P ) gpus total group
2 gpus event loop group

» Can run multiple concurrent process all
sharing one (or more) GPUs

* use nvidia-cuda-mps-server to share 2
P100s between up to 32 processes

Normalized Time to 1 Process

* curve is mostly flat — nowhere near maxing
out GPU resources

0 5 10 15 20 25 30 35

Number of processes

* we can do the same with a V100 w/ 48GB
and run 62 processes with little impact
on performance

C. Leggett 2020-11-05



>

Porting to Kokkos

Build infrastructure
« Kokkos has decent CMake integration

* requires separate binaries for each device backend (CUDA, HIP, Intel) or host parallel
(pThread, OpenMP)

* In theory you can run both device/host parallel backends in same code, but then you can’t
use the default execution space for your kernels: have to say which go where

Shared libraries not compatible with device symbol relocation

* if you want shared libs, all symbols in a kernel must be visible to one compilation unit
« wrap kernels in one file that does a bunch of #include
» needed to do some function/file refactoring to make it all work

CUDA backend interoperable with pure CUDA
 can call CUDA functions from Kokkos kernels
* makes incremental porting and validation much easier

All offloaded data structures need to be converted to Kokkos Views



>

>

>

>

Kokkos: Porting Data Structures

Kokkos Views can either allocate host/device memory, or wrap existing pointers
- makes incremental porting of cuMalloc memory easier

Supports both row and column major ordering

Jagged multidimensional arrays not well supported by Kokkos Views
* Views of Views not meant for this

* |ots of extra boilerplate needed to make work

- easier to flatten to 1D array, or pad to 2D

Requires explicit Host «» Device memory migration
* need to create Views on host to hold copied information

Non-zero overhead to using Views
* both in the extra steps for creating the host/device Views, and operations on them



>
A
rrrrrrr ""|

ol Kokkos: Porting Kernel Code

» While syntax is different from CUDA, concepts are the same
 functions — lambdas

 parallel_for, parallel _scan, reductions
- some CUDA features not available in Kokkos (yet?). See Patatrack

- atomics (but not between devices or host/device parallel execution spaces)

» Most FCS functions identical between CUDA / Kokkos
* use a single file with #ifdef to select attributes to share as much code between version

( )

#ifdef USE KOKKOS

# 1include <Kokkos Core.hpp>

# 1include <Kokkos Random.hpp>

# define DEVICE  KOKKOS INLINE FUNCTION
#else

# define DEVICE = device

#endif

C. Leggett 2020-11-05



i Kokkos: Performance
» EXxercise various backends, compare to original CUDA

« CUDA reference is NVidia 2080

 HIP on AMD GPU (Vega56) FastCaloSim Kokkos Kernel Timing Relative To CUDA
- Intel XeLP GPU via OpenMP target ® .
offload, but | can’t show that... 35 aHp
 pThread / OpenMP best performance |5 o
with ~15 threads/procs E ) " Openti?
- HIP?is a pure HIP port, run on % = Original CPU
AMD GPU g
» Kokkos does not handle GPU ; 0
memory initialization efficiently 5.
» Kokkos kernel launch penalties 0 _ =
WOI"SG than CUDA reset simulate reduce copy d-h event loop
» AMD Vegabd6 has horrible launch latencies Kokkos
» HIP/AMD uses the CPU a lot more than CUDA when CPUFreq CUDA CUDA  HIP  Hip?
executing kernels on GPU 2200 MHz 20 Bua] L2 8
_ 3700 MHz 3.4 5.3 60 30
» Code was ported from CUDA, not rewritten cemel launch latencies / 1S

* likely considerable optimization possible

12/20 C. Leggett 2020-11-05




SYCL Build Infrastructure

» Multiple different flavours of dpcpp/SYCL
* Intel official “beta” releases
Intel closed codedrops at jlse for A21 development
* OpenCL and LevelZero backends

Intel/llvm git
- CUDA backend available (selectable at compile time)
 RNG issues (See Vince's talk later)

Codeplay

hipSYCL (AMD), triSYCL

» |In theory SYCL is single source, compile once, run anywhere, select backend at
runtime

* in practice need to build with different compilers to target different hardware
* maybe there will be convergence in the future

> Integrates well with CMake




~

2, SYCL Code Modifications

#ifdef SYCL_TARGET_CUDA Custom Selector' SeleCt deVlceS 77 Copyright (C) 2002-2020 CERN for the benefit of the ATLAS collaboration
ClaSS_CUDASEIECtor i publl{: ek :SyC1: :dEV1ce_591eCt0r { (targetable Soon! : ) based On driver // Storage of passive simulation data used during on-device simulation.
public: A . // These properties are set by different class objects before being transferred
int operator()(const cl::sycl::device& device) const override { |nformat|on. /7 to the SYCL device for processing.
const std::string device_vendor = device.get_info<device: :vendor>(); #ifndef FASTCALOSYCL SYCLCOMMON_PROPS._H_
const std::string device_driver = #define FASTCALOSYCL_SYCLCOMMON_PROPS_H_

device.get_info<cl::sycl::info: :device: :driver_version>(); #include <SyclCommon/Histo.h>

if (device.is gpu() && namespace fastcalosycl::syclcommon {

(device_vendor.find("NVIDIA") != std::string::npos) && static const unsigned int kMinHits = 1000;

(device_driver.find("CUDA") = std::string:inpos)) { il sl i sl ou
}.return 1 Context_sharing: When you Create multiple static const unsigned int kMaxUniqueHits = 2000;
r . struct CellProps {

: return -1; queues, even frO[n the Sta?e dtht_lce, 2 E g o Lo Simplified data structures: In addition to
i ne"‘;]conteXt gets crea"e ?a(cj; Ime. AS ) virtual function calls, function pointers,
endit such, any buf fer (or allocated memory) e s .| exceptions, ..., the SYCL 2020 spec. does

// Initialize device, queue and context Created from a glvel’l COﬂteXt W|” be bound int pdgId; ) not Support non_standard_layout types

o e i to that context (c.f. CUDA contexts). ' I

Initialize deVlCe, queue and context

if(veti) f
dev = fastcalosycl::syclcommon::GetTargetDevice();
// dev = cl::sycl::device(cl::sycl::default_selector());

NGRS The DPC++ toolchain has undergone numerous improvements,
¥ ates { and useful extensions were added, over the past year -- this is

dev = ctx_->get_devices()[0];

A eV ayeLEqUiis( et Bav); reflected by the new 429-page SYCL 2020 specification (c.f. the
274-page 1.2.1 specification). In particular, Unified Shared
Memory (USM) was only a proposal about 6 months ago and is

now part of the 2020 specificification, as well as support for
e e floating-point type atomic operations, leading to faster and
oM EaIgt. SRR easier development (not so many private builds of intel/llvm).

}

class SimResetKernel {
public:
SimResetKernel() = delete;
SimResetKernel(syclcommon::SimProps* props)
: num_cells_(props->num_cells), num_unique_hits_(nullptr) {

}
void operator()(cl::sycl::nd_item<i> item) const { .
unsigned int wid = item.get global linear_id(); D CMakelLists.txt
if (wid < num_cells_) {
cells_energy_[wid] = 0.0; D GeoRegion_test.Cxx
h o Kernel function objects: Callables that are
“num_unique_hits_ = o; instantiated within a command group Unit tests: Validation of host and device D Geo_testox
} H H . .
. handler, and called directly via geometries, ensure reproducible random [ Histo test.cxx
e single_task, parallel for, etc. for numbers produced on different devices
const unsigned long num_cells_; ‘lfernelulnvocatlon (Cf ertlng Iambda D SimEVEnt_test.CXX
int* num_unique_hits_; |nl|ne )
float* cells_energy_; SimHitRng_test.cxx
9 | D g_|

C. Leggett 2020-11-05



i) SYCL Performance

» Timing tests on an integrated Intel GPU (Iris Pro P580) w/ public dpcpp beta10 release
» d—nh transfer speeds are RAM—RAM so don’t count

FastCaloSim Kernel Timing Relative To CUDA
40
W Kokkos/CUDA
35 m Kokkos/HIP
Kokkos/Serial
m Kokkos/pThread
g 30 B KK/OpenMP
8 HIP2
® 25 H SYCL/CPU
5 SYCL/iGPU
S W Original CPU
_g 20
whd
)
[7)
(14
c 15
3
[}
T
3
B 10
5
0 J
reset simulate reduce copy d-h event loop

C. Leggett 2020-11-05



>

>

Lessons Learned

Build configuration requirements may be challenging
- Kokkos shared libs vs relocatable device code: code reorganization
 dpcpp changing to (too?) rapidly, things that worked last week may not work today

Separate binaries for different device backends

» Kokkos explicitly, SYCL because you need different compiler flavours
 implications for production code distribution

CUDA— Portability Layer concepts translate well

* Views / Buffers come with overhead / penalties

Launch latencies for tiny kernels kills performance on all platforms

 Portability layers make it worse
* AMD is really bad. Will RDNA2 / CDNA2 / Instinct improve things?

High performance single source CPU/GPU may be a pipe dream

GPU very underutilized in FastCaloSim
» grouping data between events helps: may require significant refactoring of frameworks
 a single GPU can be shared between multiple processes




>

>

>

>

What Recommendations Would | Make Today?

Caveats:
* non-NVidia/CUDA market very fast moving target

Are you buying hardware for you trigger farm today?

- NVidia / CUDA

Is short term performance the main metric?

* NVidia / CUDA

Is short term performance important, but not ultimate, and want some portability?
» Kokkos

Do you want to target mainly Intel and NVidia GPU hardware?

« SYCL

Long term portability on all platforms

» Kokkos

Non-NVidia software/hardware changing very rapidly: these answers may be
different in six months.



What Comes Next

» Other Parallel Portability Layers:
* OpenMP / OpenACC
* Alpaka
» Raja - Will we learn anything that Kokkos didn’t teach us?

» Other backends
« SYCL w/ CUDA on NVidia

* Intel discrete GPU (Arctic Sound/XeHP and Ponte Vecchio/XeHPC via Kokkos and SYCL)
« we can already run FCS/SYCL on XeLP, XeHP nodes at jlse

- AMD RDNAZ2 / CDNAZ2

» Better understanding/evaluation/reporting of metrics
* in coordination with other testbeds

» Update FastCaloSim to reflect what ATLAS is currently using
* more realistic particle scenarios
o) integrate into ATLAS repositories




Acknowledgments

Really want to thank all the people who contributed to this project

CUDA port:
Zhihua Dong (BNL)
Meifeng Lin (BNL)
Kwangmin Yu (BNL)
Kokkos port:

Zhihua Dong (LBL)
Charles Leggett (LBL)

SYCL port:
Charles Leggett (LBL)
Vincent Pascuzzi (LBL)

Physics Validation:
Doug Benjamin (ANL)
Tadej Novak (DESY)




>~

[ III|

BERKELEY LAB

@ C. Leggett 2020-11-05



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

